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Abstract

The quantum analog of Pauli matrices are introduced and investigated. From these matrices
and an appropriate trace over spinorial indices we construct a quantum Minkowski metric. In this
framework we show explicitly the correspondence between theSL(2, C) and Lorentz quantum
groups. FiveR matrices of the quantum Lorentz group are constructed in terms of theR matrix of
SL(2, C) group. TheseR matrices satisfy Yang–Baxter equations and two of which have adequate
properties tied to the quantum Minkowski space structure as the reality conditions of the coordinates
and the symmetrization of the metric. It is also shown that the Minkowski metric leads to invariant
and central lengths of four-vectors. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The Lorentz group plays a fundamental role in physics. First, it constitutes the homo-
geneous part of Poincaré group which is intrinsically connected to the geometry of the
space–time and leaves invariant all physical systems discribed by the special theory of rel-
ativity. Second, the different representations of Lorentz group are field discribing particles
which constitute the physical systems. For these reasons, it is especially interesting to study
the noncommutative version of the Lorentz group.

The other reason which makes the study of the quantum Lorentz group interesting
is the fact that in quantum field theory based on a classical space–time and a classi-
cal Lorentz group there exist difficulties tied to small space–time distances. One may
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hope to solve these difficulties by new tools provided by the noncommutative geometry
[1–4,15–17].

The noncommutative Minkowski space–time structure emerges from quantum Lorentz
group which has been studied by many authors, either in the formalism of bimodules over
C? algebra [5,6] or from a purely “algebraic” point of view [7–10,18]. The latter way gives
two LorentzR matrices denotedRI andRII in [9].

In this paper one constructs quantum Lorentz group out of theSL(2, C) group by showing
how all properties of the former can be deduced from the latter which are well known. In
particular we construct out of theR matrix of the quantumSL(2, C) group fiveR matrices
of the quantum Lorentz group which satisfy the Yang–Baxter equations. We show that only
two of theseR matrices have adequate properties tied to the quantum Minkowski space
structure, namely, the symmetrization of the metric and the reality of the vectors constructed
as bilinear of a spinor and a conjugate spinor.

The paper is organized in the following way. In Section 2 we recall the well known results
provided by the bicovariant calculus overSL(2, C) andSU(2) quantum groups. We shall
assume that the undotted (conjugate) and dotted generators of quantumSL(2, C) group
satisfy the commutation rules of the quantumSU(2) group.

In Section 3 the construction of quantum Lorentz group is carried out of the quan-
tum SL(2, C) group following the analog of the homomorphism for the classical groups
SO(1, 3) ∼ SL(2, C)\Z2. We shall start by investigating the quantum analog of the Pauli
matrices from which we construct the Minkowski metric and establish the completeness
relation. From the properties of the quantum Pauli matrices and the generators ofSL(2, C),
we contruct the generators of the quantum Lorentz group. We show that they satisfy the
axiomatic structure of the Hopf algebras and the orthogonality relations. We also construct
theR matrices of the Lorentz group out of those ofSL(2, C) group. TheseR matrices, de-
notedR±

(I), satisfy the Yang–Baxter equations, the Hecke relations and exhibit the quantum
symetrization properties of the Minkowski metric.

In Section 4 we investigate the properties of the Minkowski space. In particular, we
show that the Minowski metric induces an invariant length which commutes with the Hopf
algebraA generated by the quantumSL(2, C) group generators, the undotted and dotted
basis (spinors) of the bicovariant bimodule overA and the quantum coordinates of the
Minkowski space.

Finally, in addition toR±
(I), we construct and discuss in Section 5 otherR matrices of the

Lorentz group denotedR(III ) andR±
(II ). We show that among these fiveR matrices only

theR±
(I) are consistent with the commutation relations and the real structure of the quantum

Minkowski space–time and the quantum Lorentz group.

2. Bicovariant calculus onSL(2, C)SL(2, C)SL(2, C) and SU(2)SU(2)SU(2) quantum groups

Before we start to construct the quantum Lorentz group out of the quantumSL(2, C)

group, let us recall some results provided by the bicovariant calculus over theSL(2, C) and
SU(2) quantum groups. Let a unital?-algebraA be generated byMβ

α (α, β = 1, 2) which
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preserves a nondegenerate bilinear fromε

εαβMγ
αMδ

β = εγ δIA, εγ δMγ
αMδ

β = εαβIA, εαγ εγβ = δα
β = εβγ εγα,

which are the unimodularity conditions. The nondegenerate bilinear formε is considered
as a quantum spinor metric,IA being the unity ofA. To preserve these conditions under
the antimultiplicative involution? : A → A, the spinor metric must satisfy the condition
(εαβ)? = λεβ̇α̇ with λλ? = 1 leading to

εα̇β̇Mγ̇
α̇Mδ̇

β̇ = εγ̇ δ̇IA, εγ̇ δ̇Mγ̇
α̇Mδ̇

β̇ = εα̇β̇IA, εα̇γ̇ εγ̇ β̇ = δα̇

β̇
= εβ̇γ̇ εγ̇ α̇,

whereMα̇
β̇ = (Mα

β)?. For convenience, we takeλ = 1.A carries a structure of a?-Hopf
algebra with a coaction∆ : A → A ⊗ A, a counitε : A → C and an antipodeS : A →
A defined on the generators by∆(Mα

β) = Mα
γ ⊗ Mγ

β , ε(Mα
β) = δ

β
α andS(Mα

β) =
εαγ Mδ

γ εδβ . On the dotted copy, we have(∆(Mα
β))? = ∆((Mα

β)?) = ∆(Mα̇
β̇) = Mα̇

γ̇ ⊗
Mγ̇

β̇, ε(Mα̇
β̇) = δ

β̇
α̇ andS(Mα̇

β̇) = εα̇γ̇ Mδ̇
γ̇ εδ̇β̇ . The involution? acts on the antipode as

(S(Mα
β))? = εβ̇δ̇Mδ̇

γ̇ εγ̇ α̇ = S−1(Mα̇
β̇).

It is known [11] that the generators of such a system satisfy the noncommutativity relations
R

±αβ
σρ Mγ

σ Mδ
ρ = Mσ

αMρ
βR

±σρ
γ δ where the forms of theR matrices are given byR±αβ

γ δ =
δα
γ δ

β
δ + a±1εαβεγ δ satisfyingR

±αβ
σρ R

∓σρ
γ δ = δα

γ δ
β
δ with Q + εαβεαβ = 0, Q = a + a−1

anda 6= 0. TheR matrices satisfy the Yang–Baxter equations, the Hecke equations(R± +
a±2)(R± − 1) andεαβR±αλ

σγ R
±βρ
λδ = a∓1εγ δδ

ρ
σ .

Now, we consider a right-invariant basisθα of the bicovariant bimoduleΓ overA on
which the right coaction acts as∆R(θα) = θα ⊗ I , ∆R(θα̇) = θα̇ ⊗ I and the left coaction
acts as

∆L(θα) = Mα
β ⊗ θβ, ∆L(θα) = S(Mβ

α) ⊗ θβ, ∆L(θα̇) = Mα̇
β̇ ⊗ θβ̇ ,

∆L(θ α̇) = S−1(Mβ̇
α̇) ⊗ θ β̇ , (1)

where(θα)? = θα̇ and the spinorial indices are lowered and raised asθα = θβεβα, θα =
θβεβα, θ α̇ = εα̇β̇θβ̇ andθα̇ = εα̇β̇θ β̇ . From the bicovariance properties of the bimodule
A–Γ [4] we can show the existence of functionalsf : A → C satisfying the following
properties:

θαa = (a ? fα
β)θβ, θαa = (a ? f̃β

α)θβ, (2)

θα̇a = (a ? fα̇
β̇ )θβ̇ , θ α̇a = (a ? f̃β̇

α̇)θ β̇ , (3)

aθα = θβ(a ? fα
β ◦ S), aθα = θβ(a ? f̃β

α ◦ S), (4)

aθα̇ = θβ̇(a ? fα̇
β̇ ◦ S), aθ α̇ = θ β̇(a ? f̃β̇

α̇ ◦ S), (5)

f β
α (ab) = f γ

α (a)f β
γ (b), f̃α

β(ab) = f̃γ
β(a)f̃α

γ (b), (6)

fα̇
β̇ (ab) = fα̇

γ̇ (a)fγ̇
β̇ (b), f̃α̇

β̇ (ab) = f̃γ̇
β̇ (a)f̃α̇

γ̇ (b), (7)
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fα
β(I ) = δβ

α = f̃α
β(I ), fα̇

β̇ (I ) = δ
β̇
α̇ = f̃α̇

β̇ (I ), (8)

Mα
γ (fγ

β ? a) = (a ? fα
γ )Mγ

β, S(Mγ
α)(f̃β

γ ? a) = (a ? f̃γ
α)S(Mβ

γ ), (9)

Mα̇
γ̇ (fγ̇

β̇ ? a) = (a ? fα̇
γ̇ )Mγ̇

β̇ , S−1(Mγ̇
α̇)(f̃β̇

γ̇ ? a) = (a ? f̃γ̇
α̇)S−1(Mβ̇

γ̇ ), (10)

where the convolution product is defined bya ?f = (f ⊗I )∆(a) andf ?a = (I ⊗f )∆(a)

for anya ∈ A. Settinga = S(a)(S−1(a)) into the right undotted (dotted) relation of (9) and
(10), then applyingS−1(S) and comparing with the corresponding left undotted (dotted)
relation of (9) and (10), we get

fα
β = f̃α

β ◦ S, fα̇
β̇ = f̃α̇

β̇ ◦ S−1. (11)

For the generators ofA, the left relation (9) givesMα
γ Mρ

δfγ
β(Mδ

σ ) = fα
γ =

(Mρ
δ)Mδ

σ Mγ
β which shows that there exist two functionalsf±γ

α(Mδ
ρ) proportional

to theR
±ρα
γ δ matrices. Applying these functionals on both sides of the unimodularity con-

dition, we obtain:f±γ
α(Mδ

ρ) = a∓(1/2)R
±ρα
γ δ andf±γ

α(S(Mδ
ρ)) = a±(1/2)R

∓αγ
δγ [12].

The same procedure can be used for the dotted copy ofA generators. Then there exists two
basesθ±α corresponding to the functionalsf±α

β .
Applying the? involution on both sides of (2) and (3), we get respectively

(θ±αa)? = (θ±β)?(f±α
β(a(1)))

?a?
(2) = a?(θ±α)?,

(θα
±a)? = (θ

β
±)?(f̃±β

α(a(1)))
?a?

(2) = a?(θα
±)?,

(θ±α̇a)? = (θ±β̇ )?(f±α̇
β̇ (a(1)))

?a?
(2) = a?(θ±α̇)?,

(θ α̇
±a)? = (θ

β̇
±)?(f̃±β̇

α̇(a(1)))
?a?

(2) = a?(θ α̇
±)?, (12)

wherea(1) anda(2) denote elements of∆(a) = a(1) ⊗ a(2). On the other hand, fora = a?,
(4) and (5) give respectively

a?θ±α = θ±βf±α
β(S(a?

(1)))a
?
(2), a?θα

± = θ
β
±f̃±β

α(S(a?
(1)))a

?
(2),

a?θ±α̇ = θ±β̇f±α̇
β̇ (S(a?

(1)))a
?
(2), a?θ α̇

± = θ
β̇
±f̃±β̇

α̇(S(a?
(1)))a

?
(2). (13)

But for a = Mσ
ρ , we have(f±α

β(Mσ
δ))? = (a∓(1/2)R

±δβ
ασ )? = a∓(1/2)R

±β̇δ̇
σ̇ α̇ =

f∓α̇
β̇ (S(Mσ̇

δ̇)) for a real. Therefore (12) and (13) are consistent if(θ±α)? = θ∓α̇ and
(θα±)? = θ α̇∓ yielding

(f±α
β(a))? = f∓α̇

β̇ (S(a?)), (f̃±α
β(a))? = f̃∓α̇

β̇ (S(a?)),

(f±α̇
β̇ (a))? = f∓α

β(S(a?)), (f̃±α̇
β̇ (a))? = f̃∓α

β(S(a?)). (14)

Finally, by using the spinor metric to raise the indices of the right invariant bases in (2)
and (3), we may also show that

f±α
β = εβδf̃±δ

γ εγα and εβ̇δ̇f±δ̇
γ̇ εγ̇ α̇ = f̃±α̇

β̇ . (15)

In this stage, we have no indication on the explicit forms off±γ
α(Mδ̇

ρ̇) or f±γ̇
α̇(Mδ

ρ)

to control the noncommutativity between undotted and dotted generators of the quantum
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SL(2, C) group. To carry this point we assume either the generatorsMα
β commute with

Mα̇
β̇ or are controlled by theR matrices satisfying the properties of the quantumSU(2)

group. In the following we assume the latter possibility.
To reflect the specific properties of the quantumSU(2) group, we have to add the unitarity

condition on the generators asMα̇
β̇ = S(Mβ

α) andMα
β = S−1(Mβ̇

α̇). Applying S on
both sides of the unimodularity condition, we may show that the unitarity condition yields
εαβ = λεβ̇α̇ with λλ? = 1. In the following we takeλ = −1. Then to be consistent with
the quantumSU(2) group, the spinor metric must satisfy

(εαβ)? = εβ̇α̇ = −εαβ and (εαβ)? = εβ̇α̇ = −εαβ. (16)

It is easy to see, by using the unitarity condition of the generators into (1), thatθα̇ = θα

andθα = θ α̇ implying conditions on the functionals

f±α̇
β̇ = f̃±β

α, f̃±α̇
β̇ = f±β

α. (17)

As stated above, we assume that the functionals of the quantumSL(2, C) group satisfy
the same properties as theSU(2) ones. Therefore, if for example we seta = Mσ̇

ρ̇ into the
left relation of (2), we get

Mα
γ Mσ̇

δ̇f±γ
β(Mδ̇

ρ̇) = f±α
γ (Mσ̇

δ̇)Mδ̇
ρ̇Mγ

β or

Mα
γ Mσ̇

δ̇R
±ρ̇β

γ δ̇
= R

±δ̇γ
ασ̇ Mδ̇

ρ̇Mγ
β, (18)

wheref±α
γ (Mσ̇

δ̇) = R
±δ̇γ
ασ̇ = f±α

γ (S(Mδ
σ )) = a±(1/2)R

∓γ σ
δα . We have also objects of

the form

f±α
γ (S(Mσ̇

δ̇)) = R
∓γ δ̇
σ̇α = f±α

γ (S(S(Mδ
σ ))) = εδλf±α

γ (S(Mν
λ))ενσ

= a±(1/2)εδλR
∓γ λ
να ενσ = εσ̇ ρ̇f±α

γ (Mγ̇
ρ̇)εγ̇ δ̇ = εσ̇ ρ̇R

±ρ̇γ

αλ̇
ελ̇δ̇ .

From (6) and (7), we get respectively

f±α
γ (Mσ̇

δ̇)f±γ
β(S(M

ρ̇

δ̇
)) = δβ

α δ
ρ̇
σ̇ = R

±δ̇γ
ασ̇ R

∓βρ̇

δ̇γ
, (19)

f±α
γ (S(Mδ̇

σ̇ ))f±γ
β(Mδ̇

ρ̇) = δβ
α δ

ρ̇
σ̇ = R

∓γ δ̇
σ̇α R

±ρ̇β

γ δ̇
. (20)

3. The quantum Lorentz group

To have a correspondence betweenSL(2, C) and Lorentz quantum groups, we must
construct the quantum analog of the Pauli matrices. Let us consider an elementXαβ̇ as a
tensor product of an undotted and dotted elements of right invariant basis of the bimodule
A–Γ (bispinor).Xαβ̇ can always be expanded on a system of four independent 2× 2

matricesσ I
αβ̇

(I = 0, . . . , 3) asXIσ
I
αβ̇

, Xαβ̇ tranforms as

∆L(Xαβ̇) = Mα
σ Mβ̇

ρ̇ ⊗ Xσρ̇, ∆R(Xαβ̇) = Xαβ̇ ⊗ I. (21)
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Then, we have

Proposition 3.1.
1. There exist four2 × 2 matricesσ̄ I α̇β

± given by

σ̄
I α̇β
± = εα̇λ̇R

∓σ ρ̇

λ̇ν
ενβσ I

σ ρ̇ (22)

such thatXI σ̄
I α̇β
± = X±α̇β trans forms under the left coaction as

∆L(X±α̇β) = S−1(Mσ̇
α̇)S(Mρ

β) ⊗ X±σ̇ ρ .

2. σ̄
I α̇β
± are hermitian iffσ I

αβ̇
are.

Proof.
1. Setting into (21)Mα

σ Mβ̇
ρ̇ = R

±γ̇ δ

αβ̇
Mγ̇

µ̇Mδ
νR

∓σ ρ̇
µ̇ν , obtained by multiplying from the

right both sides of (18) byR∓ξ τ̇
ρ̇β and by using (19), we obtain

∆L(Xαβ̇) = R
±γ̇ δ

αβ̇
Mγ̇

µ̇Mδ
νR

∓σ ρ̇
µ̇ν ⊗ Xσρ̇.

Multiplying from the left both sides byR∓αβ̇

λ̇ν
and using (20), we deduce

∆L(XIR
±αβ̇

λ̇ν
σ I

αβ̇
) = Mλ̇

µ̇Mν
τ ⊗ XIR

∓σ ρ̇
µ̇τ σ I

σ ρ̇

= ελ̇γ̇ S−1(Mδ̇
γ̇ )εδ̇µ̇ετξ S(Mξ

κ)εκν ⊗ XIR
∓σ ρ̇
µ̇τ σ I

σ ρ̇

yielding

∆L(XI ε
α̇λ̇R

±σ ρ̇

λ̇ν
ενβσ I

σ ρ̇) = S−1(Mδ̇
α̇)S(Mγ

β) ⊗ XIε
δ̇λ̇R

∓σ ρ̇

λ̇ν
ενγ σ I

σ ρ̇ ,

which can be written in the form∆L(X
α̇β
± ) = ∆L(XI σ̄

I α̇β
± ) = S−1(Mδ̇

α̇)S(Mγ
β) ⊗

X± δ̇γ with

σ̄
I α̇β
± = εα̇λ̇R

∓σ ρ̇

λ̇ν
ενβσ I

σ ρ̇

from which we obtainελ̇α̇σ̄
I α̇β
± εβν = R

∓σ ρ̇

λ̇ν
σ I

σ ρ̇ . Multiplying from the right both sides

by R±λ̇ν
γ τ̇ and using (19), we get

σ I
αβ̇

= ελ̇γ̇ R±λ̇ν

αβ̇
εµνσ̄

I γ̇ µ
± . (23)

2. Under the conditions (16) on the spinor metric we have(R
±αρ
σν )? = R±σν

αρ , for a real,
implying

(R
±αβ̇

λ̇ν̇
)? = (a±(1/2)εβρR±αρ

σν εσλ)? = a±(1/2)εβρR±σν
αρ εσλ.

On the other hand, by using (11) and (15), we obtain



212 M. Lagraa / Journal of Geometry and Physics 34 (2000) 206–225

a±(1/2)εβρR∓σν
αρ εσλ = f∓α

ν(εβρMρ
σ εσλ) = f±α

ν(S−1(Mλ
β)) = f̃∓α

ν(Mλ
β)

= εασ f∓δ
σ (Mλ

β)εδν = a±(1/2)εασ R
∓βσ
δλ εδν = R

∓βα̇
ν̇λ

yielding (σ̄
I α̇β
± )? = εβ̇ν̇R

∓ρσ̇
ν̇λ ελα(σ I

σ ρ̇)?. Therefore, if(σ I
σ ρ̇)? = σ I

ρσ̇ then

(σ̄
I α̇β
± )? = εβ̇ν̇R

∓ρσ̇
ν̇λ ελασ I

ρσ̇ = σ̄
I β̇α
± .

The same procedure can be applied to (23) to show the converse. �

To define a quantum metric of the spaceM spanned byXI , we have to define an adequate
trace [12,13,19] over the spinorial indices which makes invariant this metric under quantum
SL(2, C) group.

Proposition 3.2. M is endowed with a metricGIJ given by

G±IJ = 1

Q
Tr(σ I σ̄ J

±) = 1

Q
εανσ I

αβ̇
σ̄

J β̇γ
± εγ ν = 1

Q
Tr(σ̄ I

±σJ ) = 1

Q
εν̇γ̇ σ̄

I γ̇ α
± σJ

αβ̇
εν̇β̇

(24)

such that
1. G±IJ XIXJ are invariant under quantum SL(2, C) group.
2. G±IJ are hermitian if the matricesσ I

αβ̇
are.

Proof.
1. To show the invariance ofG under the quantumSL(2, C) group, we consider the length

of four-vector XI , G±IJ XIXJ = (εανXαβ̇X±β̇γ εγ ν)/Q, which transforms under
SL(2, C) as

∆L(G±IJ XIXJ ) = 1

Q
εανMα

σ Mβ̇
ρ̇S−1(Mδ̇

β̇ )S(Mλ
γ )εγ ν ⊗ Xσρ̇X± δ̇λ

= 1

Q
εανMα

σ S(Mλ
γ )εγ ν ⊗ Xσδ̇X± δ̇λ

= 1

Q
εανMα

σ ελρMµ
ρεµγ εγ ν ⊗ Xσδ̇X± δ̇λ

= I ⊗ 1

Q
εσρXσδ̇X± δ̇λελρ = I ⊗ 1

Q
εσρσ I

σ δ̇
σ̄ J δ̇λ

± ελρXIXJ

= I ⊗ G±IJ XIXJ .

The same computation may be applied to show thatεν̇γ̇ X±γ̇ αXαβ̇εν̇β̇ is invariant un-
der quantumSL(2, C) group. Now, using (22) and the form of theR matrices, we
obtain
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G±IJ = 1

Q
εαξσ I

αβ̇
εβ̇λ̇R

∓σ ρ̇

λ̇ν
ενγ σ J

σ ρ̇εγ ξ

= 1

Q
a±(1/2)εαξσ I

αβ̇
εβ̇λ̇ερδR

∓σδ
µν εµλενγ σ J

σ ρ̇εγ ξ

= 1

Q
a±(1/2)εαξ εβ̇λ̇ερδ(δ

σ
µδδ

ξ + a∓1εσδεµξ )ε
µλσ I

αβ̇
σ J

σ ρ̇

= − 1

Q
a±(1/2)εαξ εβ̇λ̇ερδ(δ

σ
µδδ

ξ + a∓1εσδεµξ )ελ̇µ̇σ I
αβ̇

σ J
σ ρ̇

= − 1

Q
a±(1/2)εαξ ερδ(δ

σ
µδδ

ξ + a∓1εσδεµξ )σ
I
αµ̇σ J

σ ρ̇

= 1

Q
(a±(1/2)σ

Iξ
µ̇ σ J ξ̇

µ − a∓12σ Iξ ξ̇ σ Jδδ̇), (25)

where we have used (16) in the third and fifth line and theσ I indices are raised and

lowered as for the basis of the bicovariantA–Γ bimodule(σ Iα

β̇
= σ I

ρβ̇
ερα, σ

I β̇
α =

εβ̇ρ̇σ I
αρ̇ etc, ..). From a similar computation we can show that Tr(σ̄ I±σJ ) gives the same

form (25) forGIJ± .
2. if σ I

αβ̇
are hermitian, we have from (16) and the Proposition 3.1

(G±IJ )? = 1

Q
(εανσ I

αβ̇
σ̄

J β̇γ
± εγ ν)

? = 1

Q
εν̇γ̇ σ̄

J γ̇ β
± σ I

βα̇εν̇α̇ = G±J I .

which shows that the metricG±IJ is hermitian.
�

Now, we can give an explicit example whereεαβ = −εαβ = εβ̇α̇ = −εβ̇α̇ =(
0 −q−(1/2)

q(1/2) 0

)
andσ I the usual four matrices which are the 2× 2 identity ma-

trix σ 0
αβ̇

and the three Pauli matricesσ i

αβ̇
(i = 1, 2, 3) as

σ 0
αβ̇

=
(

1 0
0 1

)
, σ 1

αβ̇
=

(
0 1
1 0

)
, σ 2

αβ̇
=

(
0 −i

i 0

)
,

σ 3
αβ̇

=
(

q 0
0 −q−1,

)
,

whereq 6= 0 is a real number, andQ = a + a−1 = q + q−1 = −εαβεαβ . With this choice,
the metricsG±IJ are of the form



−q∓(3/2) 0 0 0

0 q±(1/2) −iq±(1/2) (q − q−1)

Q
0

0 iq±(1/2) (q − q−1)

Q
q±(1/2) 0

0 0 0 q±(1/2)




.
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The inverse is given by

G±IJ =




−q±(3/2) 0 0 0

0 q∓(1/2) Q
2

4
−iq∓(1/2) (q − q−1)Q

4
0

0 iq∓(1/2) (q − q−1)Q

4
q∓(1/2) Q

2

4
0

0 0 0 q∓(1/2)




.

In the classical limitq = 1, these metrics reduce to the classical Minkowski metric with
signature(−, +, +, +).

From a straightforward computation, we obtain the completeness relations as

σ I
αβ̇

σ̄I
ρ̇σ = Qδσ

α εβ̇δ̇ε
ρ̇δ̇, σ±Iαβ̇ σ̄

I ρ̇σ
± = Qδ

ρ̇

β̇
εδαεδσ (26)

or

σ I β̇
α σ̄I ρ̇

σ = Qδσ
α δ

β̇
ρ̇ , σ±I β̇

ασ̄
I ρ̇
±σ = Qδα

σ δ
ρ̇

β̇
, (27)

whereσ±Iαβ̇ = G±I σ
J

αβ̇
. Note that a straightforward check shows thatσ̄

α̇β
J = G+IJ σ̄

J α̇β
+ =

G−IJ σ̄
J α̇β
− = G±IJ σ̄

J α̇β
± andσ̄

J α̇β
+ G+J I = σ̄

J α̇β
− G−J I .

Remark 3.1.
• We may take as spinorial metrics satisfying (16), the most general form as

εαβ = (εβ̇α̇)? = d−(1/2)

(
ir −q−(1/2)

q(1/2) ir

)
,

εαβ = (εβ̇α̇)? = d−(1/2)

(
ir q−(1/2)

−q(1/2) ir

)
,

whereq 6= 0 and r 6= ±1 are two real deformation parameters, d = −r2 + 1 and
Q = a + a−1 = d−1(2r + q + q−1) = −εαβεαβ . From the computer MAPLE program
we can show that the metricsGIJ± are invertible and the completeness relations (26) and
(27) remain valid.

• The metricG±IJ can be written asG±IJ = G±ILG±JKGKL± = G±ILG±JK
1
Q

Tr(σKσ̄L±) = 1
Q

Tr(σ±J σ̄I ) = G±ILG±JK
1
Q

Tr(σ̄K± σL) = 1
Q

Tr(σ̄J σ±I . With a way
quite analogous that used to derive (25), we may show that

G±IJ = 1

Q
(a∓(1/2)σ̄I δ

β̇ σ̄J δ̇
β − a±(1/2)σ̄I δ̇δσ̄J β̇β). (28)

• The completeness relations (27) may be used to convert a vector to a bispinor and vice
versa

Xαβ̇ = XIσ
I
αβ̇

⇔ XI = 1

Q
εανXαβ̇ σ̄

J β̇δ
± εδνG±J I or XI = 1

Q
εν̇β̇ σ̄I

β̇αXαδ̇ε
ν̇δ̇ .
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• (21) shows thatXαβ̇ can be written in terms of spinor either asX±αβ̇ = θ±αθ∓β̇ or

X′±αβ̇ = θ±αθ±β̇ . In the case where theσ I
αβ̇

matrices are hermitian, the former choice

yields(X±αβ̇)? = X±βα̇ implyingX±I σ
I
βα̇ = (X±I σ

I
αβ̇

)? = (X±I )
?σ I

βα̇ which shows

thatX±I are real. In this case the lengthsG±IJ X±IX±J are also real.

We are now ready to show how two copies of undotted and dotted generators ofA may
be combined to form generatorsΛL

K of a unital algebraL corresponding to the quantum
Lorentz group.

Theorem 3.1. The generatorsΛL
K(L, K = 0, 1, 2, 3) of the Quantum Lorentz group are

given by

ΛL
K = 1

Q
εγ̇ δ̇σ̄L

δ̇αMα
σ σK

σρ̇Mβ̇
ρ̇εγ̇ β̇ = 1

Q
σ̄Lγ̇

αMα
σ σK ρ̇

σ S−1(Mρ̇
γ̇ ) (29)

or

ΛL
K = 1

Q
εαδMα

σ σK
σρ̇Mβ̇

ρ̇ σ̄
Nβ̇γ
± εγ δG±NL. (30)

They are real and satisfy the axiomatic structure of Hopf algebras with the relations

G±NMΛL
NΛK

M = G±LKIL and G±LKΛL
NΛK

M = G±NMIL, (31)

whereIL = IA is the unity ofL ⊂ A.

Proof. Multiplying from the left both sides of (21) bȳσNδ̇α and making the trace over
dotted indices, we get

∆LXLTr(σ̄Nδ̇α
± σL

αβ̇
) = ∆LXLQGNL

± = εγ̇ δ̇ σ̄
Nδ̇α
± Mα

σ σK
σρ̇Mβ̇

ρ̇εγ̇ β̇ ⊗ XK

yielding

∆LXL = 1

Q
εγ̇ δ̇σ̄L

δ̇αMα
σ σK

σρ̇Mβ̇
ρ̇εγ̇ β̇ ⊗ XK = ΛL

K ⊗ XK. (32)

We can also multiply from the right both sides of (21) byσ̄
Nβ̇γ
± and take trace over

undotted indices to have (30).
To show that (29) is equal to (30), we note that

εαδσ̄
Nβ̇γ
± εγ δG±NL = 1

Q
εαδσ̄

Nβ̇γ
± εγ δεν̇µ̇σ̄L

µ̇ρσ±Nρτ̇ ε
ν̇τ̇

= εαδδ
β̇
τ̇ εσρεσγ εγ δεν̇µ̇σ̄L

µ̇ρεν̇τ̇ = εν̇µ̇σ̄L
µ̇αεν̇β̇ , (33)

where we have usedG±NL = Tr(σ̄Lσ±N) and the completeness relation (27). Substituting
this equality in (30), we retrieve (29).

The reality of the generators is obtained by noticing that(σ̄
Nβ̇γ
± G±NL)? = G±LN σ̄

Nγ̇ β
± =

σ̄L
γ̇ β from which we get
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(ΛL
K)? =

(
1

Q
εαδMα

σ σK
σρ̇Mβ̇

ρ̇ σ̄
Nβ̇γ
± εγ δG±NL

)?

= 1

Q
εδ̇γ̇ σ̄L

γ̇ βMβ
ρσK

ρσ̇ Mα̇
σ̇ εδ̇α̇ = ΛL

K

due to the fact thatσ I
σ ρ̇ are hermitian. The Hopf structures of the algebra generated byΛL

K

are given by the following procedures:
1. Acting the coaction on both sides of (29), we obtain

∆(ΛL
K) = 1

Q
σ̄Lγ̇

αMα
δS−1(Mν̇

γ̇ ) ⊗ Mλ
σ σK ρ̇

σ S−1(Mρ̇
µ̇)δλ

δ δν̇
µ̇.

From the completeness relation (27), we deduce

∆(ΛL
K) = 1

Q
σ̄Lγ̇

αMα
δσ I ν̇

δ S−1(Mν̇
γ̇ ) ⊗ 1

Q
σ̄Iµ̇

δMλ
σ σK ρ̇

σ S−1(Mρ̇
µ̇)

= ΛL
I ⊗ ΛI

K. (34)

2. The counity acts as

ε(ΛL
K) = 1

Q
σ̄Lγ̇

αε(Mα
σ )σK ρ̇

σ ε(S−1(Mρ̇
γ̇ ))

= 1

Q
σ̄Lγ̇

αδσ
α σK ρ̇

σ δ
γ̇
ρ̇ = 1

Q
σ̄Lγ̇

ασα
Kγ̇ = 1

Q
G±LNTr(σ̄N

± σK)

= G±LNGNK
± = δK

L .

3. Finally, applying the antipode on both sides of (29), we get

S(ΛL
K) = 1

Q
εγ̇ β̇S(Mβ̇

ρ̇)σK
σρ̇S(Mα

σ )σ̄ δ̇α
L εγ̇ δ̇

= 1

Q
Mν̇

γ̇ εν̇ρ̇σK
σ ρ̇εαλMµ

λεµσ σ̄L
δ̇αεγ̇ δ̇ .

It now follows fromMν̇
γ̇ Mµ

λ = R
∓τ ξ̇
ν̇µ Mτ

δMξ̇
ρ̇R

±γ̇ λ
δρ̇ , obtained by multiplying from the

right both sides of (18) byR∓ασ̇
τ̇ ν and by using (19), that

S(ΛL
K) = 1

Q
R

∓τ ξ̇
ν̇µ Mτ

δMξ̇
β̇R

±γ̇ λ

δβ̇
εν̇ρ̇σK

σ ρ̇εαλε
µσ σ̄L

δ̇αεγ̇ δ̇

= 1

Q
R

∓τ ξ̇
ν̇µ Mτ

δMξ̇
β̇εν̇ρ̇σK

σ ρ̇εµσ εγ̇ δ̇R
±γ̇ λ

δβ̇
εαλσ̄L

δ̇α

= 1

Q
εµσ σK

σρ̇εν̇ρ̇R
∓τ ξ̇
ν̇µ̇ Mτ

δMξ̇
β̇σ±Lδβ̇ = 1

Q
R

∓τ ξ̇
ν̇µ εµσ σK

σ
ν̇Mτ

δMξ̇
β̇σ±Lδβ̇ ,

(35)

where we have used (23) andG±LIσ
I
αβ̇

= σ±Lαβ̇ to pass from the second line to the third.

On the other hand, we have

σ̄N
α̇βGNK

± = 1

Q
σ̄N

α̇βεν̇γ̇ σ̄
Nγ̇ δ
± σK

δτ̇ εν̇τ̇ = 1

Q
σ̄N

α̇βεν̇γ̇ εγ̇ λ̇R
∓τ ρ̇

λ̇σ
εσδσN

τρ̇σK
δτ̇ εν̇τ̇ ,
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where we have used (24) and (22). Using the completeness relation (26), we obtain

σ̄N
α̇βGNK

± = δβ
τ ερ̇µ̇εα̇µ̇R

∓τ ρ̇
ν̇σ εσδσK

δτ̇ εν̇τ̇

or

σ̄Nα̇
βGNK

± = ερ̇α̇R
∓βρ̇
ν̇σ εσδσK ν̇

δ . (36)

Substituting this equality in (35), we get

S(ΛL
K) = 1

Q
σ̄Nα̇

τMτ
δσLδβ̇Mρ̇

β̇εα̇ρ̇G±NK

= 1

Q
G±LM

(
σ̄Nα̇

τMτ
δσM

δβ̇
Mρ̇

β̇εα̇ρ̇
)

GNK
± = G±LMΛN

MGNK
±

from which we deduce the orthogonality conditions (31) which may also be checked directly
by replacing the generatorsΛL

K by their expression (29). ThenΛL
K generate a Lorentz

algebraL ⊂ A (Hopf algebra whose generators are subject to Lorentz group conditions
(31)). �

The noncommutativity between the generatorsΛL
K and the elements ofA are given by

the following theorem.

Theorem 3.2. There exist functionalsF±L
K : A → C given by

F±L
K = 1

Q
(f̃∓β̇

α̇ σ̄Lα̇
δ ? f±δ

γ σK β̇
γ ) (37)

satisfying the following:
(a)

ΛL
I (F±I

K ? a) = (a ? F±L
I )ΛI

K (38)

(b)

(F±L
K(a))? = F±L

K(S(a?)) (39)

(c)

F±L
K(ab) = F±L

I (a)F±I
K(b) (40)

F±L
K(ε(a)) = δK

L ε(a) (41)

(F±L
I ? F±I

K ◦ S)(a) = (F±L
I ◦ S ? F±I

K)(a) = δL
Kε(a) (42)

(d)

R±NM
KL G±KL = G±NM, R±NM

KL G±NM = G±KL, (43)

whereR±NM
KL = F±K

M(ΛL
N) satisfy the Yang–Baxter equations and the Hecke relations

(R± + a±2)(R± + a∓2)(R± − 1) = 0. (44)
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Proof. (a)X±αβ̇ are right invariant bases ofA–M± bimodules transforming under theL
algebra as (21). Then we can follow the Woronowicz formalism of the bicovariant bimodule
[4] to state

X±αβ̇a = (a ? (f∓β̇
ρ̇ ? f±α

σ ))X±σ ρ̇ = f∓β̇
ρ̇ (a(1))f±α

σ (a(2))a(3)X±σ ρ̇,

aX±αβ̇ = X±σ ρ̇(a ? (f∓β̇
ρ̇ ? f±α

σ ) ◦ S) = X±σ ρ̇f±α
σ (S(a(1)))f∓β̇

ρ̇ (S(a(2)))a(3)

(45)

for anya ∈ A. The convolution product of two functionals is defined as(f1 ? f2)(a) =
(f1 ⊗ f2)∆(a). This choice of functionals is justified by the fact that if we apply the?

involution on both sides of the first relation of (45) and we use the second relation with
a = a?, we obtain

a?X±βα̇ = X±ρσ̇ (f∓β̇
ρ̇ (a(1)))

?(f±α
σ (a(2)))

?(a(3))
?

= X±ρσ̇ f±β
ρ(S(a?

(1)))f∓α̇
σ̇ (S(a?

(2)))(a(3))
? (46)

which is consistent with (14). Now, the bicovariant bimodule formalism [4] can also be
applied to theA–M± bimodules to get

Mα
ρMβ̇

σ̇ ((f∓σ̇
δ̇ ? f±ρ

γ ) ? a) = (a ? (f∓β̇
σ̇ ? f±α

ρ))Mρ
γ Mσ̇

δ̇

from which we deduce

Mα
σ S−1(Mµ̇

ν̇)(f̃∓β̇
µ̇ ? f±σ

γ ? a) = (a ? (f̃∓µ̇
µ̇ ? f±α

σ )Mσ
γ S−1(Mβ̇

µ̇),

where we have used (15). Note that this equation is a combination of the first equation of
(9) and the second equation of (10).

Multiplying now both sides from the left bȳσLν̇
α and from right byσK β̇

γ and using the
completeness relation (27), we obtain

1

Q
σ̄Lν̇

αMα
σ σ I µ̇

σ S−1(Mµ̇
ν̇)((f̃∓β̇

τ̇ σ̄I τ̇
δ ? f±δ

γ σK β̇
γ ) ? a)

= (a ? (f̃∓µ̇
ν̇ σ̄Lν̇

α ? f±α
σ σ I µ̇

σ ))
1

Q
σ̄I τ̇

δMδ
γ σK β̇

γ S−1(Mβ̇
τ̇ )

yielding

ΛL
I (F±I

K ? a) = (a ? F±L
I )ΛI

K with F±L
K = 1

Q
(f̃∓β̇

α̇ σ̄Lα̇
δ ? f±δ

γ σK β̇
γ ).

(b) Using (14),(15) and (33), we get



M. Lagraa / Journal of Geometry and Physics 34 (2000) 206–225 219

(F±L
K(a))? = 1

Q
(G±LNεα̇ρ̇ f̃∓β̇

α̇(a(1))σ̄±Nρ̇δf±δ
γ (a(2))σ

K
γ λ̇

εβ̇λ̇)?

= 1

Q
ελβ(f±δ

γ (a(2)))
?σK

λγ̇ (f̃±β̇
α̇(a(1)))

?σ̄
Nδ̇ρ
± G±NLερα

= 1

Q
ελβf∓δ̇

γ̇ (S(a?
(2)))σ

K
λγ̇ f̃±β

α(S(a?
(1)))εν̇µ̇σ̄L

µ̇ρεαρεν̇δ̇

= 1

Q
εν̇δ̇f∓δ̇

γ̇ (S(a?
(2)))εγ̇ ξ̇ σ

K ξ̇
λ ελβf̃±β

α(S(a?
(1)))εαρσ̄Lν̇

ρ

= 1

Q
f̃∓ξ̇

ν̇ (S(a?
(2)))σ̄Lν̇

ρf±ρ
λ(S(a?

(1)))σ
K ξ̇
λ = F±L

K(S(a?)).

(c) Eq. (40) is deduced directly from (6) and (7) and the completeness relation (27) as

F±L
K(ab) = 1

Q
f̃∓β̇

α̇(a(1)b(1))σ̄Lα̇
δf±δ

γ (a(2)b(2))σ
K β̇
γ

= 1

Q
f̃∓ν̇

α̇(a(1))f̃∓β̇
ν̇ (b(1))σ̄Lα̇

δf±δ
µ(a(2))f±µ

γ (b(2))σ
K β̇
γ

= 1

Q
f̃∓ρ̇

α̇(a(1))f̃∓β̇
ν̇ (b(1))σ̄Lα̇

δf±δ
µ(a(2))f±τ

γ (b(2))σ
K β̇
γ δτ

µδ
ρ̇
ν̇

= 1

Q
(f̃∓ρ̇

α̇ σ̄Lα̇
δ ? f±δ

µσ I ρ̇
µ )(a)

1

Q
(f̃∓β̇

ν̇ σ̄I ν̇
τ ? f±τ

γ σK β̇
γ )(b)

= F±L
I (a)F±I

I (b).

We also have

F±L
K(ε(a)) = 1

Q
(f̃∓β̇

α̇(ε(a(1)))σ̄Lα̇
δf±δ

γ (ε(a(2)))σ
K β̇
γ = 1

Q
σ̄Lα̇

δσK α̇
δ ε(a)

= δL
Kε(a),

where we have used (8). Eq. (42) can be deduced directly from (40) and (41).
(d) Applying (37) on (29), we get

R±NM
LK GLK

± = 1

Q
(f̃∓β̇

τ̇ σ̄Lτ̇
δ ? f±δ

γ σM β̇
γ )

(
1

Q
σ̄Kν̇

σ Mσ
ρσN λ̇

ρ S−1(Mλ̇
ν̇)

)
G±LK

= 1

Q2
f̃∓β̇

τ̇ (Mσ
αS−1(Mµ̇

ν̇))σ̄Lτ̇
δσ̄Kν̇

σ f±δ
γ (Mα

ρS−1(Mλ̇
µ̇))

×σM β̇
γ σN λ̇

ρ G±LK.

UsingG±LKσ̄Lτ̇
δσ̄Kν̇

σ = σ̄Lτ̇
δσ̄ L σ

± ν̇ = R
±αβ̇
ν̇µ εµσ σL

αβ̇
σ̄Lτ̇

δ = −Q(a±(1/2)εδνετσ +a∓(1/2)

εδτ εσν), obtained from (22), the completeness relation (16), (27) and the form of theR
matrices, we get

− 1

Q
f̃∓κ̇

τ̇ (Mσ
α)f̃∓β̇

κ̇ (S−1(Mµ̇
ν̇))f±δ

ξ (Mα
ρ)f±ξ

γ (S−1(Mλ̇
µ̇))(a±(1/2)εδνετσ

+ a∓(1/2)εδτ εσν) = − 1

Q
R∓ακ

τσ R∓µβ
κν R

±ρξ
δα R

±λγ
ξµ (a±(1/2)εδνετσ + a∓(1/2)εδτ εσν),
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where we have used Eq. (17). An explicit computation gives

R∓ακ
τσ R∓µβ

κν R
±ρξ
δα R

±λγ
ξµ εδνετσ = ερβελγ and R∓ακ

τσ R∓µβ
κν R

±ρξ
δα R

±λγ
ξµ εδτ εσν

= ερλεγβ

from which we deduce

R±NM
LK G±LK = − 1

Q
(a±(1/2)ερβελγ + a∓(1/2)ερλεγβ)σM β̇

γ σN λ̇
ρ

= 1

Q
(a±(1/2)ερβεγ̇ λ̇ − a∓(1/2)ερλεγβ)σM β̇

γ σN λ̇
ρ

= 1

Q
(a±(1/2)σ

Nβ
γ̇ σM β̇

γ − a∓(1/2)σNλλ̇σMββ̇) = GNM
± ,

where we have used Eqs. (16) and (25). A similar calculation gives

R±NM
LK G±NM = 1

Q
(a∓(1/2)σ̄L δ

β̇ σ̄Kδ̇
β − a±(1/2)σ̄Lβ̇β σ̄Kδ̇δ) = G±LK.

The Yang–Baxter equations may be obtained by applyingF±L
K on both sides of (38)

for a = ΛN
M and then using (40). Using the Hecke relations of theR matrices, we obtain

after an explicit straightforward calculation

R±NM
IJ R±IJ

LK = (2 − a±2 − a∓2)R±NM
LK + δN

L δM
K

+ 1

Q2
a∓2(1 − a±2)R

±ρξ
δα R

±λγ
ξκ R∓ακ

τσ σM β̇
γ σN λ̇

ρ σ̄Lτ̇
δσ̄Kβ̇

σ

+ 1

Q2
a±2(1 − a∓2)R

∓µβ
ξν R±λγ

αµ R∓αξ
τσ σM β̇

γ σN λ̇
ρ σ̄Lτ̇

ρ σ̄Kν̇
σ ,

1

Q2
R

±ρξ
δα R

±λγ
ξκ R±ακ

τσ σM β̇
γ σN λ̇

ρ σ̄I τ̇
δσ̄J β̇

σR±IJ
LK

= (1 − a±2)R±NM
LK + a±2

Q2
R

∓µβ
ξν R±λγ

κµ R∓κξ
τσ σM β̇

γ σN λ̇
ρ σ̄Lτ̇

ρ σ̄Kν̇
σ ,

1

Q2
R

∓µβ
ξν R±λγ

αµ R∓αξ
τσ σM β̇

γ σN λ̇
ρ σ̄I τ̇

ρ σ̄J ν̇
σR±IJ

LK

= (1 − a∓2)R±NM
LK + a∓2

Q2
R±δα

ξκ R±λγ
αµ R∓κµ

τσ σM β̇
γ σN δ̇

ρ σ̄Lτ̇
ξ σ̄Kβ̇

σ

leading to (44). �

As for theA–Γ bimodule, the existence of two functionalsF±L
K leads to right invariant

basesX±I of theA–M± bimodules satisfying

X±La = (a ? F±L
K)X±K, X

(±)L
± a = (a ? F̃

(±) L
±K )X

(±)K
±

aX±L = X±K(a ? F±L
K ◦ S), aX(±)L

± = X
(±)K
± (a ? F̃

(±) L
±K ◦ S) (47)

for any a ∈ A. The indices are raised and lowered by using the Minkowski metric as
XLGLK± = X(±)K . Following the same formalism applied to theA–Γ bimodule, we may
show that
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F±L
K = GKM

± F̃
(±) N
±M G±NL and F̃

(±) K
±L ◦ S = F±L

K

implying

G±L
MNF±N

L ? F±M
K(a) = G±KLε(a) and

G±KLF±N
L ? F±M

K(a) = G±MNε(a) (48)

for anya ∈ A.

4. Quantum Minkowski space

We consider the elementsX±I of right invariant bases of theA–M± bimodules as
coordinates which span the Minkowski vector spacesM± over the fieldR. The Minkowski
spaceM+(M−) is equipped with coordinatesX+I (X−) and the metricG+IJ (G−IJ ). Eq.
(32) shows that∆L : M → L ⊗ M is a corepresentation ofL in the vector spaceM. In
fact, from (32) and (34) and the action of the counity on the generators ofL, it is easy to
verify (id ⊗ ∆L)∆L = (∆ ⊗ id)∆L and(ε ⊗ id)∆L = id.

In the following we assume that the coordinatesX±I commute, in the quantum sense, with
themselves and with the elements (spinors) of the right invariant basis ofA–Γ bimodule. To
carry this quantum symmetrization, we consider the bicovariant bimodule automorphism
σ [4] such that for anya, b ∈ A and the left invariant element̃X±I = S(ΛI

J )X±J , θ̃±α =
S(Mα

β)θ±β or θ̃±α̇ = S(Mα̇
β̇)θ±β̇ , we have

σ(X̃(a)L ⊗ X(b)K = X(b)K ⊗ X̃(a)L = X(b)K ⊗ S(ΛL
N)X(a)N

= S(ΛL
N)σ(X(a)N ⊗ X(b)K)

= F(b)K
Q(S(ΛP

N))S(ΛL
P )(X(b)Q ⊗ X(a)N),

wherea, b = ± or ∓. From the latter equation we deduce

σ(X(a)L ⊗ X(b)K) = F(b)K
N(S(ΛL

M))(X(b)N ⊗ X(a)M).

For the spinors, it suffices to replaceΛL
K by Mα

β or Mα̇
β̇ andX(a)I by θ(a)α or θ(a)α̇. The

symmetrization of the product is defined as

X(a)LX(b)K = F(b)K
N(S(ΛL

M))(X(b)N ⊗ X(a)M),

θ(a)αX(b)K = F(b)K
N(S(Mα

β))(X(b)Nθ(a)β) or

θ(a)α̇X(b)K = F(b)K
N(S(Mα̇

β̇))(X(b)Nθ(a)β̇ ). (49)

From this, we state

Theorem 4.1. The lengths,G±IJ X±IX±J are bi-invariant and central.

Proof. By construction,X±I are right invariant. As a consequence of the orthogonality
condition of the generators ofL, we may easily see from the transformations ofX±I (34)
thatG±IJ X±IX±J is left invariant. From (47) and (48), we get, for anya ∈ A,
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G±IJ X±IX±J a = (a ? G±IJ (F±J
L ? F±I

K))X±KX±L = (a ? ε)G±KLX±KX±L

= aG±KLX±KX±L (50)

which shows that the norm commutes with anya ∈ A. From (48) and (49), we obtain

X(a)P G±IJ X±IX±J = G±IJ F±I
N (S(ΛP

M))F±J
K(S(ΛM

L))X±NX±KX(a)L

= G±IJ (F±J
K ? F±I

N )(S(ΛP
L))X±NX±KX(a)L

= G±NKX±NX±KX(a)P . (51)

The same results may be obtained by replacingX(a)P by θ(a)α or θ(a)α̇ which show that the
length also commutes with the quantum coordinates and the spinors. �

Remark 4.1.
• G±LKX±LX±K is bi-invariant and real. Since it commutes with everything, it is of the

formλIL with λ a real number.
• In the classical limitF±L

N(ΛK
M) = δN

L δM
K , therefore, both quantum Minkowksi spaces

M± reduce to the same classical Minkowski space.
• The quantititesG±IJ X∓IX∓J andG±IJ X∓IX±J are bi-invariant but not central.

5. Concluding remarks

In this paper we have showed how all properties of the quantum Lorentz group and
Minkowski space can be derived from those of the quantumSL(2, C) group and its spinorial
representations. The Minkowski spaceM+ can be equipped by quantum real coordinates
X+I (X−I ) and a hermitian metricG+IJ (G−IJ ) giving a lengthG+IJ X+IX+J (G−IJ X−I

X−J ) central and bi-invariant under quantum Lorentz andSL(2, C) groups. The commuta-
tion relations are given by

ΛL
IΛN

PR±MK
IP = R±IP

LN ΛI
MΛP

K, (52)

X±LΛN
M = R±PI

LN ΛP
MX±I , (53)

X±NX±M = R±LK
NM X±LX±K, (54)

where the matricesR±NM
LK = F±L

M(ΛK
N) are given by

R±NM
LK = 1

Q2
R∓ακ

τσ R∓µβ
κν R

±ρε
δα R±λγ

εµ σM β̇
γ σN λ̇

ρ σ̄Lτ̇
δσ̄Kν̇

σ . (55)

By writing theR matrix in terms of projectorsPAρδ
αβ = −(1/Q)εαβερδ andPSρδ

αβ =
δα
ρ δ

β
δ −PAρδ

αβ asR±αβ
ρδ = PSρδ

αβ −a±2PAρδ
αβ we may decompose theR±NM

LK as a sum
of four projectors [9]

R±NM
LK = R±NM

SKL
− a±2R±NM

AKL
− a∓2R±NM

ĀKl
+ R±NM

T KL
, (56)
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whereR±
T is the quantum trace projector,R±

S is the traceless part of the quantum sym-
metrizer, andR±

A andR±
Ā are the selfdual and antiselfdual parts of the quantum antisym-

metrizer given respectively by

R±NM
SLK

= 1

Q2
R∓ακ

τσ PSκν
µβPSδα

ρεR±λγ
εµ σM β̇

γ σN λ̇
ρ σ̄Lτ̇

δσ̄Kν̇
σ , (57)

R±NM
T LK

= 1

Q2
R∓ακ

τσ PAκν
µβPAδα

ρεR±λγ
εµ σM β̇

γ σN λ̇
ρ σ̄Lτ̇

δσ̄Kν̇
σ , (58)

R±NM
ALK

= 1

Q2
R∓ακ

τσ PSκν
µβPAδα

ρεR±λγ
εµ σM β̇

γ σN λ̇
ρ σ̄Lτ̇

δσ̄Kν̇
σ , (59)

R±NM

ĀLK
= 1

Q2
R∓ακ

τσ PAκν
µβPSδα

ρεR±λγ
εµ σM β̇

γ σN λ̇
ρ σ̄Lτ̇

δσ̄Kν̇
σ (60)

and satisfy

δN
L δM

K = R±NM
SLK

+ R±NM
ALK

+ R±NM

ĀLK
+ R±NM

T LK
, (61)

R±NM
ILK

R±LK
J PQ

= δIJR±NM
IPQ

, I,J = S, T ,A, Ā. (62)

From Eq. (49), the quantum symmetrization of the coordinates is given by

(δN
L δM

K − R±NM
LK )X±NX±M = 0 ⇒

{R±NM
ALK

X±NX±M = 0,

R±NM
ALK

X±NX±M = 0,
(63)

where we have used (56),(61) and (62). TheR± matrices satisfy the same Hecke condition
(44) and the same decomposition in terms of projectors (56) as theR(I ) matrix of [9]. If we
take a Minkowski space–time equipped with the coordinatesXI = X+I and a metricGIJ =
GIJ+ given in Section 3, the four-vector length is given by−GIJ XIXJ = q−(1/3)X2

0 −
q(1/2)X2

3 − (q(1/3)/Q)ZZ̄− (q−(1/2)/Q)Z̄Z, whereZ = X1+ iX2 andZ̄ = X1− iX2. On
the other hand, an explicit calculation gives from (63) the following commutation relations
[14]

X0XI = XIX0, X3Z − q2ZX3 = (q − q−1)X0Z,

ZZ̄ − Z̄Z = (q2 − q−2)X2
3 + q−1(q2 − q−2)X0X3.

By redefining the Minkowski space–time coordinates asC = qX0−X3, D = q−1X0+X3,
A = Z andB = Z̄ we retrieve the commutation relations and the four-vector length given
in [7,9,10,18].

Note that we can also have functionalsF±L
M = (1/Q)f̃±β̇

α̇ σ̄Lα̇
δ ?f±δ

γ σ
M β̇
γ : A → C

which controls the noncommutativity of the quantum Lorentz group. The action ofF±L
K

on the generatorsΛK
N gives theR±

(III ) matrices

R± NM
(III )LK = a∓2

Q2
R±ακ

τσ R±µβ
κν R

±ρε
δα R±λγ

εµ σM β̇
γ σN λ̇

ρ σ̄Lτ̇
δσ̄Kν̇

σ , (64)
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which satisfy Yang–Baxter equations but cannot be decomposed in terms of projecteurs
(57)–(60). These functionals may be derived from right invariant baseX′±αβ̇ = θ±αθ±β̇

subject to the condition(X′±αβ̇)? = X′∓βα̇ leading to right invariant basesX′±I of an
L − M′± bimodules satisfying(X′±I )

? = X′∓I . From these bases we may construct
real coordinates of the Minkowski spacesX̃±I = X′±I + X′∓I but the corresponding
R̃± = R±

(III ) + R∓
(III ) matrices do not satisfy the Yang–Baxter equations.

Another set ofR matrices can be constructed out of theR matrix. In fact, from a purely
algebraic point of view, we can start from the relation (52) whereΛN

M are of the form
(29), then by using the commutation relations of the generators ofSL(2, C) we may show
that the general solutions of theR matrix are given by

R(abcd)NM
LK = a−(a+b+c+d)/2

Q2
R(a)ακ

τσ R(b)µβ
κν R

(c)ρε
δα R(d)λγ

εµ σM β̇
γ σN

ρ
λ̇σ̄ δ

Lτ̇ σ̄
σ
Kν̇, (65)

where the indicesa, b, c, d = ± or ∓. The Yang–Baxter conditions requirec = a or c = d

andb = a or b = d. By using the completeness relations (27) we can show that the inverse
is given byR−1(abcd) = R(−d−b−c−a). A straightforward calculation gives

(
R(abcd)NM

LK

)? =a−(a+b+c+d)/2

Q2
R(a)ακ

τσ R(c)µβ
κν R

(b)ρε
δα R(d)λγ

εµ σN β̇
γ σM λ̇

ρ σ̄Kτ̇
δσ̄Lν̇

σ . (66)

Then in addition toR(III ) = R++++, its inverseR−1
(III ) = R− − − − andR±

(I) = R∓∓±±

and their inverseR−1±
(I) = R∓±∓± we also have solutions of the formR∓±±± and their

inverseR±±±∓. The condition (66) shows that among the differentR matrices onlyR±
I

satisfy the relation(RNM
LK )? = R−1

KL
MN required by (Theorem 3.2b) the consistency con-

ditions between commutation relations (52)–(54) and the reality of the generators of the
Lorentz group and the Minkowski space–time coordinates. TheR(III ) andR±

(II ) matrices
are consistent with the reality conditions of the commutation relations (52) and (54) but
not with (53) because(R NM

(III )LK)? = R MN
(III )KL and(R± NM

(II )LK)? = R± MN
(II )KL while the reality

conditions of (53) require(RNM
LK )? = R−1MN

KL . We can associate to theR∓±±± matrices
the functionalsF± M

(II )L : L → C such thatF± M
(II )L (ΛK

N) = R± NM
(II )LK = a∓R∓±±±. The

R±
(II ) matrices may be decomposed in terms of projectors (57)–(60)

R± NM
(II )LK = a∓2R±NM

SLK
+ a±2R±NM

T LK
− R±NM

ALK
− R±NM

ĀLK
(67)

and satisfy the Hecke relations

(R±
(II ) + 1)(R±

(II ) − a±2)(R±
(II ) − a∓2) = 0 (68)

as theR(II ) matrix of [9]. But in this case, we cannot write the functionalsF(II ) in terms

of f±α
β andf̃±α̇

β̇ and therefore the right invariant basesX′′
±I of theL−M′′± bimodules

cannot be written as a bilinear of spinors and conjugate spinors.
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